SIMPLE ORDERING

HOME PAGE

Multi Function TAIL LIGHTS

FEDERAL  #108 SUMMARY

3rd BRAKE CHMSLs Etc

TESTIMONIALS

ABOUT  US

CLEARANCE, SIDE  MARKER  and  I.D.s

COMPARING COMPETITORS

LEGAL CLARIFICATIONS

TLC #310-1 Lumen Depreciation "of LEDs" (U.S. Department of Energy)

U.S. Department of Energy - Energy Efficiency and Renewable Energy Solid-State Lighting                                    310-1

Lumen Depreciation
All types of electric light sources experience lumen depreciation, defined as the decrease in lumen output that occurs as a lamp is operated. The causes of lumen depreciation in incandescent lamps are depletion of the filament over time and the accumulation of evaporated tungsten particles on the bulb wall. This typically results in 10% to 15% depreciation compared to initial lumen output over the 1,000 hour life of an incandescent lamp.

In fluorescent lamps, the causes of lumen depreciation are photochemical degradation of the phosphor coating and the glass tube, and the accumulation of light-absorbing deposits within the lamp over time. Specific lamp lumen depreciation curves are provided by the lamp manufacturers. Current high quality fluorescent lamps using rare earth phosphors will lose only 5-10% of initial lumens at 20,000 hours of operation. Compact fluorescent lamps (CFLs) experience higher lumen depreciation compared to linear sources, but higher quality models generally lose no more than 20% of initial lumens over their 10,000 hour life.

Lumen depreciation in LEDs varies depending on package and system design. The primary cause of lumen depreciation is heat generated at the LED junction. LEDs do not emit heat as infrared radiation (IR) like other light sources, so the heat must be removed from the device by conduction or convection. If the LED system design has inadequate heat sinking or other means of removing the heat, the device temperature will rise, resulting in lower light output. Clouding of the epoxy encapsulant used to cover some LED chips also results in decreased lumens making it out of the device. Newer high-power LED devices use silicone as an encapsulant, which prevents this problem. LEDs continue to operate even after their light output has decreased to very low levels. This becomes the important factor in determining the effective useful life of the LED.

Back to Index